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The actin cytoskeleton is an essential intracellular filamentous
structure that underpins cellular transport and cytoplasmic
streaming in plant cells. However, the system-level properties of
actin-based cellular trafficking remain tenuous, largely due to the
inability to quantify key features of the actin cytoskeleton. Here,
we developed an automated image-based, network-driven frame-
work to accurately segment and quantify actin cytoskeletal struc-
tures and Golgi transport. We show that the actin cytoskeleton in
both growing and elongated hypocotyl cells has structural proper-
ties facilitating efficient transport. Our findings suggest that the
erratic movement of Golgi is a stable cellular phenomenon that
might optimize distribution efficiency of cell material. Moreover,
we demonstrate that Golgi transport in hypocotyl cells can be
accurately predicted from the actin network topology alone. Thus,
our framework provides quantitative evidence for system-wide
coordination of cellular transport in plant cells and can be readily
applied to investigate cytoskeletal organization and transport in
other organisms.

actin | cytoskeleton | Golgi | image processing | networks

The cell interior is a heterogeneous and crowded space com-
prising a large range of molecules and organelles (1, 2).

Because diffusion through this complex environment is not suffi-
cient to match varying demands for cell maintenance and growth,
intricate cellular transport schemes have evolved (3, 4). Trans-
port of cellular components across large distances relies sub-
stantially on the cytoskeleton (4–7). Moreover, in plant cells,
many organelles move rapidly due to actomyosin-based cytoplas-
mic streaming (8–10). For instance, Golgi transport relies on the
actomyosin system, and an impaired actin cytoskeleton leads to
Golgi aggregation and reduced secretion and endocytosis (10–
12). Although many molecular features of actin-based transport
in plant cells have been elucidated (13, 14), quantitative mea-
sures of the structure of the actin cytoskeleton, and how this
structure relates to organelle transport, remain elusive. This is
largely due to the difficulties in accurately segmenting the actin
cytoskeleton and organelle movement, in particular in growing
plant cells.

Theoretical models have been used to analyze the interplay
between cytoplasmic streaming and actin organization, demon-
strating the emergence of self-organized, rotational streaming
patterns (3, 15). However, these studies neglected the discrete,
filamentous structure of the cytoskeleton. Theoretical inves-
tigations that have considered discrete cytoskeletal structures
revealed different regimes of transport, depending on the con-
tribution from diffusion or motor-protein–driven transport along
random networks of segments (16); the impact of motor-protein
movements on cytoplasm in lattice networks (17); and the effect
of length, orientation, and polarity of random filament segments
on transport rates (18). The studies that do incorporate biologi-

cal data have suggested that plant cytoskeletal networks, approx-
imated as grids, may support efficient transport processes in
hypocotyl cells (19, 20) and that organelle movement depends
on local actin structures in root epidermal cells (10). A detailed
study of leaf trichome growth demonstrated the importance
of organized actin networks for efficient and targeted distribu-
tion of new cell wall material (21). However, a global, system-
wide view of actin-based organelle transport remains elusive and
is complicated by differences between cell types and develop-
mental stages.

Here, we developed a network-based framework that accu-
rately segments the actin cytoskeleton from three developmen-
tal stages of hypocotyl plant cells and combined it with an auto-
mated tracking of Golgi transport. This approach allowed us to
analyze the four aspects of the actin cytoskeletal transport sys-
tem, including its structure, design principles, dynamics, and con-
trol (22). We found that the actin cytoskeleton maintains proper-
ties that support efficient transport over time in growing, partially
and fully elongated hypocotyl cells, despite rapid reorganization.
We also show that Golgi wiggling behavior is reminiscent of
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optimized search strategies that might indicate efficient uptake
and deposition of Golgi-related cell material. In addition, we
demonstrated that features of Golgi transport can be predicted
from properties of the system-wide organization of the actin
cytoskeleton. Altogether, our framework opens up a systems per-
spective to dissect and understand the transport functionality of
the actin cytoskeleton.

Results
A Pipeline to Extract and Represent the Actin Cytoskeleton as a
Network. Because the actin cytoskeleton is composed of discrete
and interconnected filaments, it can be efficiently represented in
a network-based framework (19, 23, 24) with nodes represent-
ing crossings or end points of actin filaments (AFs) and weighted
edges capturing AF segments. We extracted network represen-
tations from partially elongated Arabidopsis thaliana (Arabidop-
sis) hypocotyl cells, around 3mm from the apical hook, that
expressed FABD-GFP, using spinning-disc confocal microscopy
data (Fig. 1F for pipeline; Materials and Methods). To study actin-
based transport at different cell developmental stages, we fur-
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Fig. 1. Automated extraction and validation of networks from actin cytoskeletal image data. (A) Grayscale confocal image of two partially elongated
Arabidopsis hypocotyl cells after registration and background subtraction (“original + preprocessing”). The same cell was used as example throughout the
paper. (B) Cytoskeleton image with improved signal-to-noise ratio after cropping of the largest cell and application of tubeness filter (vwidth = 1.8; “filter-
ing”). (C) Binary cytoskeleton image after application of adaptive median threshold (vthres = 101; “thresholding”). (D) Skeletonized cytoskeletal structures
after removal of spurious fragments of small size or low intensity (vsize = 27 pixels and vint = 0.5; “skeletonization + cleaning”). Positions of network nodes
are marked by colored pixels (Inset). (E) Overlay of skeleton image and extracted cytoskeletal network with edges color coded by their capacity, reflecting
average filament thickness (“network extraction”). Multiple filaments may contribute to an edge (compare Inset and star). Edges were added to connect
the network (compare dotted lines and triangles). (F) Overview of automated pipeline for network-based representation of the actin cytoskeleton incorpo-
rating image processing (A–D), network extraction (E), and parameter gauging (G–K). (G) Overlay of synthetic filaments (blue) and automated segmentation
(red) of a synthetic cytoskeleton image (gray). (H) Overlay of manual (blue) and automated (red) segmentation of a biological cytoskeleton image (gray).
(I) Four image processing parameters were varied to determine their optimal values for 20 images and 20 images of synthetic and biological cytoskeletons,
respectively, which were segmented manually for comparison (“parameter gauging”). Segmentation quality was measured by the average of the small-
est distance, dmanu→auto (blue), from the pixels of the manual segmentation to those of the automated segmentation and vice versa, dauto→manu (red).
Shown are sections of the parameter space, averaged over all 40 studied images, for fixed (vwidth, vint) = (1.8, 101) and varying block size vthres and size
threshold vsize. (J) Minimization of the Haussdorf distance dHD = 1

2 (dmanu→auto + dauto→manu) (purple) to avoid both over- and undersegmentation yielded(
v∗width, v∗thres, v∗size, v∗int

)
= (1.8, 101, 27, 0.50) ± (0.2, 8.0, 8.9, 0.06) (mean ± SD). (K) Distribution of average distances between manual and automated

segmentations for the optimal parameters with dmanu→auto = 1.2± 0.9 pixels, dauto→manu = 3.5± 3.2 pixels, and dHD = 2.4± 2.1 pixels, respectively.

ther analyzed fully elongated as well as growing hypocotyl cells,
around 5mm and 1mm from the apical hook, respectively (Fig.
S1 and below). The recorded images were corrected for drift
and bleaching (Fig. 1A), manually cropped to the cellular region
of interest, and filtered to enhance tube-like structures of the
cytoskeleton with a parameter vwidth (Fig. 1B). AFs were seg-
mented by applying an adaptive median threshold of block size,
vthres (Fig. 1C). The binary images were skeletonized to obtain
AF center lines and spurious fragments smaller than vsize pixels
or below vint of the average fragment intensity were removed
(Fig. 1D). Networks were obtained by identifying the nodes,
adding edges between pairs of nodes directly connected via the
skeleton, and assigning edge weights reflecting features of AF
segments, e.g., average thickness (Fig. 1E).

To test whether our network-based framework captured rel-
evant biological features of the actin cytoskeleton, we com-
pared our automated segmentations against synthetic images of
known cytoskeleton-like structures (Fig. 1G) as well as man-
ually segmented cytoskeleton images as a gold standard (Fig.
1H). Because the accuracy of the network representation relies
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on four parameters (vwidth, vthres, vsize, and vint), we per-
formed extensive gauging by varying these parameters in a wide
range of values (Fig. 1 I and J) and identified those ensur-
ing best agreement between manual and automated segmen-
tations measured by the Haussdorf distance, i.e., the average
minimum distance between pixels of the two segmentations
(25, 26). Parameter gauging yielded an optimal average of
dHD =2.4± 2.1 pixels (Fig. 1 J and K; mean±SD), compara-
ble to contending approaches (SI Materials and Methods). Thus,
whereas errors in the automated segmentation occur, our param-
eter optimization ensures an optimal compromise between over-
and undersegmentation across different recordings.

Our approach is directly applicable to 3D image data. How-
ever, our focus in the main text on 2D networks is justified by the
cylindrical shell geometry of the cortical cytoskeleton (19, 27) as
well as the size of the transported Golgi, which may bridge gaps
between cortical AFs that are not resolved in 2D images (28–
30). Moreover, we show that our findings remain valid for 3D
image data (Fig. S2 and below). Thus, our approach yields an
accurate and mathematically powerful network representation of
the cytoskeleton in hypocotyl plant cells from image data.

The Network Representations Capture Biologically Relevant Features
of the Actin Cytoskeleton. To ensure that our framework captured
known changes in the actin cytoskeleton, we determined differ-
ences in cytoskeletal organization between partially elongated
hypocotyl cells of plants treated with Latrunculin B (LatB; Fig.
2A), a drug that inhibits actin polymerization (31), and control
cells (Fig. 2B; seven cells from seven different seedlings per treat-
ment). To quantify actin network phenotypes, we computed the
number of connected components after removal of edges with
capacities below the 50th percentile as a measure of fragmen-
tation (Fig. 2D and ref. 32; mathematical definitions and inter-
pretations of all studied network properties are given in Table
S1). Fragmentation was lower in networks of control than of
LatB-treated cells (Fig. 2E; independent two-sample t test P
valuePt < 10−50), indicating that large connected patches of AFs
were absent in LatB-treated cells, consistent with visual inspec-
tion. Similarly, the average edge capacity was higher in control
than in LatB-treated cells (Pt < 10−38), reflecting a reduction
in actin bundling in the LatB-treated cells. Finally, these find-
ings were corroborated by the assortativity (32), which quantifies
whether two adjacent nodes are of similar degree and reflects the
network heterogeneity. We found stronger heterogeneity for con-
trol than for LatB-treated cells (Pt < 10−50), suggesting regions
of bundled actin that are surrounded by AFs in the control cells.

To further assess the filamentous structure of the actin cyto-
skeleton, we compared the arc length of filament segments to
their Euclidean length and found a strong correlation (Fig.
2F; Pearson correlation coefficient cP =0.998 and P value
PP < 10−50). Consequently, filament bending, i.e., the ratio of
the two lengths, was small, B =1.2 ± 0.2, in particular for long
filament segments (Fig. 2F, Inset). This limited bending of longer
filament segments is plausible because actin bundles, typically
resulting in longer filament segments, exhibit greater stiffness
compared with AFs (33, 34). Furthermore, we found that filament
segments were preferentially oriented in parallel to the major cell
axis in control cells, but not in LatB-treated cells (Fig. 2G). To
demonstrate the robustness of our findings, we showed that the
differences in network properties between control and treatment
were not affected by removal of a random fraction of edges, sim-
ulating effects of erroneous network extraction (Fig. S3).

Next, we compared cytoskeletal networks in hypocotyl cells at
different developmental stages, i.e., in growing and fully elon-
gated cells, and found notable differences (Fig. S1). In partic-
ular, in contrast to both partially and fully elongated hypocotyl
cells, the actin cytoskeleton in untreated growing hypocotyl
cells showed stronger fragmentation and weaker bundling than

in their LatB-treated counterparts. These differences are in
agreement with the more even distribution and more strongly
branched structure of the actin cytoskeleton in growing hypocotyl
cells (35, 36) (Fig. S1), as well as the continuous gradient in cell
elongation rates along the hypocotyl in dark-grown Arabidopsis
seedlings (37). Moreover, our findings from 2D image data were
corroborated by analyses of 3D image data and networks (Fig.
S2). Therefore, our results show that the extracted network rep-
resentations of the actin cytoskeleton enable automated pheno-
typing of cytoskeletal structures.

The Actin Cytoskeleton Supports Efficient Transport. A major func-
tion of the plant actin cytoskeleton is to mediate transport of a
range of organelles and compartments. To assess the transport
efficiency of actin networks in partially elongated hypocotyl cells,
we computed a number of seminal network properties and com-
pared them against ensembles of two types of randomized null
model networks (each network was randomized 20 times; Fig.
2C for first null model that shuffles node positions and edges and
Fig. S3 for second null model that shuffles edge properties only).
We determined the average path length (32), which reflects the
reachability of a network, and compared it against an ensemble
of networks from the first null model (Fig. 2H). We found that
the average path length of the extracted networks was smaller
than that of the null model networks (Fig. 2I; Pt < 10−50; Fig.
S3 for analysis of robustness of this finding against removal of
edges). This difference indicates that the actin cytoskeleton is
tuned toward shorter path lengths. Similarly, the coefficients of
variation (CVs) of the shortest path lengths in the extracted net-
works were smaller than expected from the null model networks
(Pt < 10−50), indicating that also fluctuations in the path length
between any two nodes are maintained at a low level. Another
classical transport-related network property is the algebraic con-
nectivity (32), which reflects the redundancy of paths between
any two nodes and thus captures the robustness of the trans-
portation network against disruptions. The algebraic connectivity
of the extracted networks was higher than expected by chance
(Pt < 10−14). In contrast, the LatB-disrupted actin cytoskele-
tons did not show any significant differences in their transport-
related network properties compared with the null model net-
works (Fig. S3). These findings support the hypothesis that trans-
port efficiency is a biological design principle of the intact actin
cytoskeleton (19).

To investigate the structural origin of this transport efficiency,
we reconsidered the assortativity (32) of the cytoskeleton and
found that it was higher in the extracted networks than expected
by chance (Pt < 10−50). Similarly, we found that the CV of the
angles between AF segments and the major cell axis was smaller
in the extracted networks than expected by chance (Pt < 10−50).
Together these findings suggest that the formation of connected
patches of aligned actin bundles is a functionally relevant feature
of the cytoskeleton.

To ensure that our results were robust, we used an additional
and more restricted null model, which shuffles only edge proper-
ties. Whereas the first null model is more flexible, the second one
excludes potential artifacts that could arise from an increased
number of edge crossings or a more homogeneous distribution
of node positions compared with the extracted networks (Fig.
S3). Our findings from the first null model were consistently con-
firmed by the second one. Hence, differences in the studied net-
work properties between extracted and null model networks are
not an artifact of the randomization procedures.

Despite organizational differences of the actin cytoskeleton in
hypocotyl cells at different developmental stages, the actin net-
work in partially elongated as well as fully elongated and growing
hypocotyl cells showed properties of efficient transport (Fig. S1).
For example, both reachability and robustness of the actin net-
works were better than expected by chance. Again, our findings
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Fig. 2. Phenotyping of actin cytoskeleton using the extracted networks captures biological signals and reveals transport efficiency. Shown are results
for partially elongated hypocotyl cells of plants treated with the actin-disrupting drug LatB (orange), untreated control plants (green), and ensembles
of 20 randomized networks (gray). (A) Cellular recording (Left) and extracted actin network (Right) of a LatB-treated cell with edge colors representing
edge capacities. (B) Cellular recording (Left) and extracted actin network (Right) of an untreated control cell. (C) Artistic interpretation of the random-
ization procedure (Left) and a randomized network (Right) of the control cell (B) with occasional edge crossings (e.g., triangles). (D) Time series and
box plots of the number of connected components after removal of edges with capacities below the 50th percentile (“fragmentation”) for a control
and a LatB-treated cell. (E) Ratios of different properties of networks extracted from seven control and seven LatB-treated cells. The number of con-
nected components was lower and the average edge capacity (“bundling”) and the degree assortativity (“heterogeneity”) were higher for control than
for LatB-treated cells (independent two-sample t test P values Pt < 0.05 were considered significant). (F) Scatter plots of the arc length aF of the fila-
ment segments vs. the Euclidean length aE of the corresponding edges showed strong correlation for control and LatB-treated cells (Pearson correla-
tion coefficient cP = 0.998 and P value PP < 10−50). F, Inset displays relative lengths B = a−1

E aF (“bending”) with an average of B = 1.2 ± 0.2 (mean ±
SD). (G) Distribution of edge angles, weighted by edge capacities, relative to the major cell axis showed a prevalence of AFs parallel to the cell axis in the
control cells but not in LatB-treated cells. (H) Time series and box plots of the average path length (“reachability”) for one control cell and 20 randomized
networks of the first null model for each time step (mean ± SD). (I) The extracted actin networks of the seven control cells showed significantly lower
average path lengths, CV of the path lengths (“dispersal”), and CV of the edge angles (“contortion”) than their counterparts from the first null model. The
algebraic connectivities (“robustness”) and assortativities (heterogeneity) of the actin networks were higher than expected from the first null model.

remained valid when studying actin networks extracted from 3D
image data (Fig. S2).

A potential issue, shared by all current approaches that extract
transport-related networks from image data, is the unknown
edge directionality. Individual AFs usually allow unidirectional
movement of motor proteins only, and actin bundles in root hairs
and other tip growing cells are typically composed of parallel
AFs (9, 38, 39). In contrast, our analyses of cytoskeletal transport
capacity rely on the assumption of bidirectional transport along
edges. Indeed, our data showed that<50% of actin edges exhibit
predominantly unidirectional movement of close-by Golgi, irre-
spective of the actin bundle thickness (see Fig. 4 and Fig. S4),

partially justifying the assumption of bidirectional transport. This
deviation from the expected unidirectional movement along bun-
dles of parallel AFs may be partially due to noise-induced track-
ing errors that may lead to apparent bidirectional movement,
especially during phases of Golgi pausing (11, 40). Moreover, in
the computation of edge directionality a given Golgi may be asso-
ciated with multiple edges and neighboring actin bundles may
exhibit different orientations (10, 21) (details in Fig. S4). Finally,
given the low Reynolds numbers of the cytoplasm (1), cytoplas-
mic streaming may carry temporarily detached Golgi (41) irre-
spective of the underlying actin bundle or its orientation (Fig.
S5). In summary, our analyses indicate that transport efficiency
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is a central design principle of the actin cytoskeleton in hypocotyl
plant cells.

Automated Quantification of Golgi Movement. To quantify actin-
based cellular transport, we studied partially elongated hypocotyl
cells dually labeled with FABD-GFP and tdTomato-CesA6 (tdT-
CesA6), used as a proxy for Golgi movement (42, 43). We ana-
lyzed the flow of Golgi through automated tracking (44, 45) in
image series from control and LatB-treated cells (Fig. 3 A and B).
Golgi bodies moved with velocity v =0.36± 0.26 s−1·µm in con-
trol cells (Fig. 3C), which is higher than v =0.04 ± 0.03 s−1·µm

A

F

I J K

G H

B C D E

Fig. 3. Quantification of Golgi movement indicates stability and efficiency of wiggling behavior. Shown are Golgi dynamics in partially elongated hypocotyl
cells of plants treated with the actin-disrupting drug LatB (orange) and untreated control plants (green). (A) Overlay of cellular recording of Golgi and
Golgi tracks from a control cell. (B) Overlay of cellular recording of Golgi and Golgi tracks from a LatB-treated cell. (C) Distributions of Golgi velocities
in LatB-treated cells, v = 0.04± 0.03 s−1·µm, and control cells, v = 0.36± 0.26 s−1·µm (mean ± SD). (D) Distributions of absolute angles for control and
LatB-treated cells. (E) Schematic of different angles used to study movement of Golgi bodies. Shown are the absolute angle between a Golgi track seg-
ment and the major cell axis (dashed gray angle) and the relative angle between two consecutive segments of a given Golgi track (solid gray angle),
as well as the pairwise angle between two segments of two different Golgi tracks at a given time step (dotted gray angle). (F) Distributions of rela-
tive angles were broad with a = 85◦± 55◦ and a = 104◦± 55◦ for control and LatB-treated cells, respectively (dashed lines). (G) Distributions of rela-
tive angles, averaged over a given track, showed unimodal distributions with peaks around 85◦ and 104◦ for control and LatB-treated cells, respectively
(dashed lines). (H) Time series of relative angles, averaged over a given time step, for each of the studied control and LatB-treated cells (Left). All time
series were stationary; i.e., they showed no increasing or decreasing trend (H, Upper Right; augmented Dickey–Fuller unit root-test P values PDF < 0.05),
except one (see triangle). The fluctuations of the time series were small (H, Lower Right; CV [a] = 0.10± 0.03). (I) Distributions of relative angles in depen-
dence of distance of the track segments from the cytoskeleton (Left; circles show results for control cells; solid lines and shaded areas show mean ±
SD). Excess of Golgi at a given distance from the cytoskeleton for control and LatB-treated cells (I, Right; compare solid lines and triangle) is given by the
difference between the frequency of actual Golgi and the frequency of Golgi distributed randomly and uniformly across the cell area (dashed black line).
(J) Example of an original Golgi track (solid light green) and the corresponding straightened track (dashed dark green), where each new track segment
represents a largely straight run of the Golgi with relative angles below 90◦. (K) Distributions of segment lengths of straightened Golgi tracks followed
truncated power laws with exponents α= 3.60 and α= 4.48 and bounds lmin = 5.11 and lmin = 0.62 for control and LatB-treated cells, respectively.

in LatB-treated cells, consistent with previous studies (10, 11).
The Golgi movement was predominantly parallel to the major
cell axis in control cells but not in LatB-treated cells (Fig. 3D),
correlating with the orientation of actin bundles (compare with
Fig. 2G). Thus, our automated tracking captures known features
of Golgi movement and may therefore be suitable for further,
more detailed analyses of Golgi behavior.

Golgi Bodies Exhibit Wiggling, Which Does Not Change Over Time or
with Distance to the Actin Cytoskeleton. The movement of Golgi
bodies is characterized as saltatory or stop and go (11, 30),
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whereby Golgi switch between periods of directed movement and
undirected “wiggling” behavior (Fig. 3E). Whereas it has been
suggested that Golgi wiggling is not specific to individual Golgi
bodies (10), it is yet unclear whether Golgi wiggling changes over
time or depends on the distance of the Golgi from the actin
cytoskeleton. To quantify these characteristics, we computed
the angles between consecutive Golgi track segments (referred
to as “relative angles”; Fig. 3E) and refer to movement with
relative angles above 90◦ as wiggling behavior (Fig. S6 shows
another measure of wiggling). The observed distributions of rel-
ative angles across the studied cells were broad, demonstrating
that both largely unidirectional movement and wiggling behavior
were present (Fig. 3F). For LatB-treated cells, the average rel-
ative angle a =104◦± 55◦ was larger than for control cells with
a =85◦± 55◦ and wiggling was thus more common. The distri-
butions of relative angles averaged across a given track (Fig. 3G)
peaked at around 90◦ for both untreated and LatB-treated cells,
showing that the majority of Golgi tracks contained both peri-
ods of directed movement and wiggling behavior. Hence, our
findings confirm that wiggling behavior is not specific to indi-
vidual Golgi.

To test whether the prevalence of Golgi wiggling changes over
time, we calculated the distribution of average relative angles
over time (Fig. 3H, Left). We found that Golgi motility did
not change during the course of the recordings (Fig. 3H, Upper
Right). Moreover, the prevalence of Golgi wiggling showed only
very minor fluctuations within and across time series (Fig. 3H,
Lower Right; CV [a] = 0.10 ± 0.03), indicating that a constant
fraction of Golgi exhibited wiggling behavior over time. Our data
therefore suggest that Golgi wiggling is a common and stable cel-
lular phenomenon. To study the effect of the distance between
actin cytoskeleton and Golgi on wiggling, we computed the rel-
ative angles between consecutive track segments at a given dis-
tance from the cytoskeletal center line (Fig. 3I, Left). The fre-
quency of Golgi was dependent on the distance to the AFs (Fig.
3I, Right), with high Golgi densities up to 2µm from the AFs.
Surprisingly, the prevalence of Golgi wiggling did not depend on
the distance from the AFs (or on their thickness, Fig. S6). More-
over, although Golgi movement may vary substantially between
cells, the features of Golgi movement studied here were highly
consistent across cells (Fig. S6).

Movement Patterns of Golgi Resemble Search Strategies and Might
Optimize Uptake and Delivery. We note that the Golgi wiggling
resembles the searching behavior of foraging animals (46, 47)
or microbial motion (48) that has been suggested to optimize
search efficiency. This type of motion is characterized by random
reorientations (Fig. 3D) and step sizes l that follow a power-law

distribution P (l) = α−1
lmin

(
l

lmin

)−α

. Because our image series
provide snapshots with fixed time intervals, to quantify the dis-
tribution of Golgi step sizes, we considered track segments with
relative angles below 90◦ as one step and replaced them by a sin-
gle segment capturing the net displacement (Fig. 3J). Indeed, the
distributions of step sizes of these straightened tracks followed
truncated power laws with exponents α=3.60 and α=4.48 for
control and LatB-treated cells, respectively [Fig. 3K; in partic-
ular, truncated power laws yielded higher likelihoods than expo-
nential distributions (49)]. These exponents are larger than those
typically reported for foraging animals or bacteria, 1<α< 3 (46–
48), but might indicate search strategies in small areas with a lim-
ited number of targets (50) or in the presence of obstacles or
preferred areas (51–53), e.g., other organelles or delivery sites.
Again, these findings were highly consistent across cells (Fig. S6).

Despite obvious differences in mechanisms underlying Golgi
movement and animal foraging there may be similar goals.
Namely, it is plausible that Golgi-derived material may need to
be exchanged between parts of the plasma membrane, the endo-

plasmatic reticulum (ER), and other compartments. Assuming
that these sites are not globally coordinated by the cell, the
switching of Golgi between directed movement and wiggling
behavior may therefore provide an efficient search strategy. This
is compatible with proposed models of Golgi movement (30),
such as the “vacuum cleaner” model (Golgi move through the
cell and pick up products from the ER) or the “recruitment”
model (Golgi pause in the vicinity of active ER sites to facili-
tate trafficking). Our findings might therefore indicate a connec-
tion between Golgi wiggling and the optimization of uptake and
delivery of Golgi-related material throughout the cell.

The Golgi search behavior is compatible with the movement
of Golgi along the actin structures. Whereas, at a given time
step, the majority of Golgi stayed at the same AF, some faster
Golgi moved to different AFs (Fig. S5). Moreover, it remains
unclear whether Golgi bodies are transported through the cell
by direct interactions with motor proteins or indirectly via cyto-
plasmic streaming (54). By investigating the relative movement
of different Golgi at a given time step (referred to as “pairwise
angles”; Fig. 3E), we found substantial antiparallel movement of
close-by Golgi (Fig. S5). Taking into account the low Reynolds
numbers of the cytoplasm (1), this antiparallel movement contra-
dicts the assumption of indirect, cytoplasmic-streaming–induced
movement and instead supports myosin-based transport of a sub-
stantial fraction of Golgi bodies. In conclusion, our data sug-
gest that switching of Golgi to adjacent AFs is myosin depen-
dent, whereas switching to nonadjacent AFs is due to cytoplasmic
streaming that may carry the Golgi over large distances.

Local and Global Actin Network Architecture May Be Used to Predict
Direction and Velocity of Golgi Movement. Our previous analyses
assumed that the capacity of a given actin network edge, i.e., its
average thickness, reflects its potential to transport cellular cargo
(Fig. 2). To test this hypothesis, we studied the Golgi flow on
two levels: First, we computed pairwise correlations between the
properties of Golgi flow and actin structures, as modeled by our
extracted networks. Second, we combined different edge prop-
erties of the actin networks to predict features of Golgi flow
(e.g., direction and velocity), using a multiple–linear-regression
approach. To this end, for the extracted actin networks (Fig. 4 A
and B), we determined the local edge capacities and global edge
properties that incorporate information about the importance
of any given edge in the network context. Namely, we studied
edge degree (measuring the total thickness of adjacent edges),
the edge page rank (measuring the probability that cargo that
randomly traverses the network is found at the given edge), the
edge path betweenness (measuring the likelihood that the given
edge lies on a shortest path through the network), and the edge
flow betweenness [measuring the total maximum flow between
any two nodes through the given edge (32); see Table S1 for
mathematical definitions and explanations]. In parallel, from the
Golgi tracks at each time step, we constructed an auxiliary Golgi
flow network by copying the structure of the actin network and
assigning new edge weights in the Golgi flow network accord-
ing to various features of Golgi movement in the vicinity of the
respective edge [e.g., the number of Golgi (Fig. 4E) or the direc-
tion and velocity of close-by Golgi (Fig. 4F)].

To investigate the relationship between actin structure and
Golgi dynamics in partially elongated hypocotyl cells, we first
computed the correlation between the determined edge prop-
erties of actin and Golgi flow networks. For instance, we studied
the dependence of the Golgi direction and velocity on the actin
edge rank. The correlation between the two properties varied
over time and across cells (Fig. 4G). Across all studied partially
elongated cells, this correlation was significant for control cells
with cP =0.384, whereas no significant correlation was found for
the LatB-treated cells with cP =−0.023. These findings are com-
patible with the severely reduced flow (Fig. 3C) and increased
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Fig. 4. Analysis of cellular organization of actin cytoskeleton enables prediction of Golgi dynamics. Shown are results for partially elongated hypocotyl cells
of plants treated with the actin-disrupting drug LatB (orange) and untreated control cells (green). (A) Overlay of cellular recording of actin cytoskeleton and
extracted actin network. (B) Extracted actin network with edge colors representing their capacities, i.e., average thicknesses. (C) Extracted actin network
with edge colors representing their edge ranks. (D) Overlay of cellular recording of Golgi and Golgi tracks throughout the recording. (E) Golgi flow network
with edge colors representing the numbers of close-by Golgi, i.e., track segments with starting points within 8 pixels from a given edge. (F) Golgi flow
network with edge colors representing the direction and velocity of close-by Golgi track segments (no Golgi were assigned to white edges, e.g., triangles).
(G) Time series of Pearson correlation coefficients cP between Golgi track segment direction and velocity and actin edge rank (Upper) and exemplary scatter
plots for one time point for a control and a LatB-treated cell, respectively (Lower; compare to open circles in Upper). (H) Heat maps of Pearson correlation
coefficients cP between different edge properties of actin and Golgi flow networks for control (Left) and LatB-treated (Right) cells. For control cells and
LatB-treated cells, there was a significant correlation between the actin edge capacity and the Golgi number (compare to I). Correlations between the actin
edge rank and Golgi direction and velocity were significant for the control cells with cP = 0.384 but not for the LatB-treated cells with cP =−0.023 (compare
to G). (I) Scatter plots of the number of Golgi close to an edge and the respective edge capacity showed positive correlations with cP = 0.347 for control and
cP = 0.350 for LatB-treated cells. The slope of a linear regression for the combined data was s = 51 (black). (J) Heat map of coefficients of determination R2

for multiple linear regressions of the Golgi flow network edge properties (first column) and the respective predictive power P values Pt′ of the actin edge
properties that were used as predictors (last five columns; one-sample two-sided t test P values Pt′ measure whether inclusion of the respective predictor
improves the prediction) for the control cells. Coefficients of determination were highest for direction- and velocity-related Golgi properties (R2 > 0.7). The
actin capacity, degree, and rank were more reliable predictors (Pt′ < 0.05) than edge flow and path betweenness (Pt′ ≥ 0.05).

wiggling behavior of Golgi (Fig. 3F) in LatB-treated cells. We
further evaluated the correlations between all pairs of edge prop-
erties, averaged across the studied cells and time points (Fig.
4H). Some pairs of properties, such as Golgi direction and veloc-
ity and actin edge rank discussed above, were correlated for
the control cells (|cP |> 0.2) but not for the LatB-treated cells
(|cP | ≤ 0.2; Fig. 4G). Only the number of Golgi close to a given
edge was correlated with the respective edge capacity and edge
degree for both control and LatB-treated cells (Fig. 4I). These
findings show that although the flow of Golgi is severely altered

by the LatB treatment, Golgi still agglomerate in the vicinity of
the actin stubs (Fig. 3I). However, for most pairs of actin and
Golgi flow network edge properties, there was no or only weak
correlation (|cP | ≤ 0.2). Hence, whereas in particular, edge flow
and path betweenness have been suggested to predict transport
in real-world networks (55–57), they were not predictive of Golgi
transport along the actin cytoskeleton in hypocotyl plant cells.
This deviation may be due to different transport requirements in
particular regions of the cell, especially during hypocotyl elonga-
tion growth (37, 58).
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Because pairwise correlations were of moderate value, we then
used multiple linear regression to see whether certain aspects of
Golgi flow could be predicted from a combination of actin edge
properties. Indeed, the number of Golgi close to an actin edge
(Fig. 4K; coefficient of determination R2 =0.704) and the Golgi
direction and velocity (R2 =0.747) were accurately predicted
from the edge properties of the underlying actin cytoskeletal net-
work. Moreover, edge capacity, edge degree, and edge rank of
the actin network had higher predictive power (one-sample two-
sided t test P values Pt′ < 0.05 for most Golgi flow properties)
than the edge path and flow betweenness (Pt′ ≥ 0.05). As edge
capacity and edge degree reflect (semi)local actin bundling, their
observed high predictive power supports the finding that actin
bundling is correlated with Golgi density and velocity (Fig. S5)
(10). As indicated above, the edge rank measures the (global)
importance of an edge in the network context and corresponds
to the probability that cargo that randomly switches between
adjacent filament segments is found at the given edge, whereby
thicker filaments are frequented with higher probabilities. This
assumption of random movement is compatible with the wiggling
of Golgi (Fig. 3).

Interestingly, these correlations between actin structures and
Golgi movement were very similar for growing and fully elon-
gated hypocotyl cells (Fig. S1). Our results were confirmed by
analysis of 3D data of actin cytoskeleton and Golgi (Fig. S2).
Therefore, the system-wide organization of the actin cytoskele-
ton in hypocotyl cells shapes, and may be used to predict, the
dynamic flow of Golgi.

Finally, we note that our imaging setup captured only the
outer periclinal cell side, for both 2D and 3D data. Because 3D
imaging of the complete, quickly rearranging plant cytoskeleton
is not yet feasible, we modeled the cylindrical geometry of the
cortical cytoskeleton by periodically extending the original, 2D
extracted network. Whereas cytoskeletal structures on different
cell sides generally differ (e.g., refs. 59 and 60 for actin and ref.
61 for microtubules), it is parsimonious and avoids an unbiologi-
cal plane-like cytoskeletal geometry. Indeed, taking into account
this cylindrical geometry moderately but significantly improved
the predictive power of our regression-based analyses of Golgi
movement (Fig. S4). Taken together, our data show that Golgi
transport in hypocotyl cells is not merely determined by the local
structure of the cortical cytoskeleton, but also depends on larger
architectural contexts, as well as its cylindrical geometry.

Concluding Remarks
Although the molecular details of actin monomers and fila-
ments as well as actin-associated proteins are relatively well stud-
ied, quantifying actin-based transport in a larger cellular con-
text remains challenging. To address this gap, we introduced
an accurate image-based network representation of the actin
cytoskeleton to facilitate automated and unbiased quantifica-
tion of cytoskeletal phenotypes and functions. We used this
framework to establish that system-level properties of the actin
cytoskeleton determine key features of Golgi transport in Ara-
bidopsis hypocotyl cells.

Our approach of integrating cytoskeletal network structures
with tracking data of organelles is directly transferable to var-
ious biological systems and functions: In plants, in addition
to the analysis of different cell types, transport of mitochon-
dria (4, 10) and photodamage avoidance movement of chloro-
plasts (62) represent interesting test grounds. In animals, it has
been shown that cytoplasmic streaming in fruit fly oocytes (63)
and transport of lysosomes in monkey kidney cells depend on

microtubules (7). Although these are interesting local correla-
tions of cytoskeletal features and organelle transport, we expect
broader, system-level understanding of these processes by the
application of interdisciplinary approaches such as ours. Our
automated framework paves the way for quantitative assess-
ment of the actin cytoskeleton and trafficking in, for example,
large-scale chemical and genetic screens. Moreover, our find-
ings indicate that network-based models could be used to predict
potential exchange sites of Golgi-related material. Altogether,
the presented combination of experimental imaging techniques
and theoretical network-based analyses provides an important
step toward a systems understanding and, ultimately, control of
cytoskeleton-based transport.

Materials and Methods
Plant Material and Experimental Setup. We used Arabidopsis Columbia-0
35S:FABD-GFP and pCesA6:tdT-CesA6 dual-labeled, 3-d-old, and dark-grown
seedlings (12, 36) to study actin cytoskeleton and Golgi bodies (SI Materi-
als and Methods and Movie S1). For drug and control treatment, seedlings
were floated on distilled water with and without 150 nM LatB, respectively.
Image series of partially elongated hypocotyl cells around 1 mm below the
apical hook were captured using a spinning-disk confocal microscope with
a spatial resolution of 0.133 pixel−1·µm and a time interval of 2 s between
subsequent 2D images (64). In a slightly modified imaging setup, both grow-
ing and fully elongated cells around 1 mm and 5 mm below the apical hook,
respectively, were imaged for comparison. Additionally, 3D image stacks were
obtained using the same setup with 1 µm between three subsequent z slices.

Extraction and Randomization of Actin Networks. We corrected the poten-
tial drift of the seedlings using Fiji-StackReg rigid body stack registration
(45, 65), compensated photobleaching by normalizing mean intensities, and
improved the signal-to-noise ratio by using the Fiji-BackgroundSubtraction
filter with a radius of 50 pixels (66) (SI Materials and Methods; see mathbiol.
mpimp-golm.mpg.de/CytoSeg/ for open-source code and examples). To rep-
resent the actin cytoskeleton as a network in 2D and 3D, we enhanced fila-
mentous structures of width vwidth with a 2D tubeness filter (67), applied an
adaptive median threshold with block size vthres (68), skeletonized the resul-
tant binary image (69), and removed all spurious connected components
smaller than vsize pixels or with average intensities below vint of the average
component intensity. We identified the nodes of the network as crossings or
endpoints of filaments. We added an edge between two nodes if they were
directly connected by a skeleton line and assigned different edge weights
such as its capacity, i.e., the average intensity along the respective filament
per unit length. We gauged the four imaging parameters, using synthetic
images of known cytoskeleton-like structures and manual segmentations of
cytoskeleton images as a gold standard. To assess the biological relevance
of the studied actin network properties, we used a first null model that dis-
tributes the nodes of the original network randomly and uniformly across
the cell area (2D) or volume (3D) and shuffles edges such that their Euclidean
length is preserved. A second null model shuffles only the edge properties
of the original network (19).

Quantification of Golgi Movement. We automatically tracked the movement
of Golgi in 2D and 3D, using Fiji-TrackMate (SI Materials and Methods). We
detected the Golgi as particles of around 5 pixels in radius (44, 45). We then
linked the Golgi in different frames, using the linear assignment problem
tracker with a maximum linkage distance of 24 pixels, a maximum gap-
closing distance of 24 pixels, and a maximum frame gap number of 4. To
correlate actin structures with Golgi movement, we constructed auxiliary
Golgi flow networks by copying the actin network. Each edge of the Golgi
flow network was then assigned different weighting factors, e.g., the num-
ber of track segments within a cutoff distance of 8 pixels or the average
velocity of close-by Golgi.
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48. Matthäus F, Jagodic M, Dobnikar J (2009) E. coli superdiffusion and chemotaxis-search
strategy, precision, and motility. Biophys J 97:946–957.

49. Clauset A, Shalizi CR, Newman M (2009) Power-law distributions in empirical data.
SIAM Rev 51:661–703.
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